
Structural and transport properties in the Ag3SI system: a molecular dynamics study of alpha,

beta and molten phases

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 181

(http://iopscience.iop.org/0953-8984/16/3/001)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 07:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 181–194 PII: S0953-8984(04)69716-5

Structural and transport properties in the Ag3SI
system: a molecular dynamics study of alpha, beta
and molten phases

S Matsunaga1 and P A Madden2

1 Division of General Education, Nagaoka National College of Technology, Nagaoka 940-8532,
Japan
2 Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road,
Oxford OX1 3QZ, UK

Received 1 October 2003
Published 9 January 2004
Online at stacks.iop.org/JPhysCM/16/181 (DOI: 10.1088/0953-8984/16/3/001)

Abstract
Structural properties of the β phase and transport properties of the superionic
(α), β and molten phases of Ag3SI are investigated by molecular dynamics
simulation (MD), using Vashishta–Rahman (VR)-type potentials. In the β

phase, the pair distribution functions are quite different from those in the α

phase, because anions form the order arrangement in a bcc structure in the
β phase, whereas anions occupy the lattice points randomly in the α phase.
The silver distributions obtained in the β phase are in good agreement with
experimental results, which are quite different from those in the α phase, as
we reported in a previous paper. The conductivities obtained in the α and β

phases by MD are also in good agreement with experiments. The frequency
dependent diffusion coefficients in the α and β phases, which are derived from
the temporal Fourier transformation of the velocity autocorrelation function,
have similar features to the neutron TOF spectra data.

1. Introduction

Superionic conductors are a group of substances which exhibit high values of ionic conductivity
whilst in the solid state [1]. They have been of considerable interest because of their
technological importance and their novel physical behaviour. Silver sulfide iodide is one of the
superionic conductors of the group AgI, Ag2S and Ag3SI, which is the most widely studied.
Among them, the compound Ag3SI was first reported in 1965 by Reuter and Hardel [2–4]. At
temperatures above 519 K, Ag3SI shows its superionic phase, i.e. α-phase, with a bcc structure
of disordered arrangement of anions, S and I ions.

In a previous paper [5] (hereafter referred to as paper I), we used a set of Vashishta–
Rahman (VR)-type pair potentials [6, 7] to obtain the pair distribution functions gi j(r) and other
structural properties for Ag3SI in the α and molten phases by molecular dynamics simulation
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Table 1. The values of parameters in the potential sets used in the MD simulations.

The particle radii (Å) σI = σS = 2.11
σAg = 0.69

The effective valence (e) ZAg = 0.6
ZI = −0.6
ZS = −1.2

The repulsive strength (e2 Å−1)
For Ag–Ag, Ag–I, I–I, I–S A1 = 0.0123
For Ag–S, S–S A2 = 0.0150

The electronic polarizability (e2 Å−1) αAg = 0
αI = 6.52
αS = 6.52

(MD). The structural properties by MD in the α phase are in good agreement with recent
experimental work [8]. These MD results have shown that these potential sets are capable of
reproducing the main features of the static structure of this system.

As a continuation of our work, we report the results of the structural properties in the
β phase and transport properties in the β, α and molten phases of the Ag3SI system. After
we submitted paper I, we discovered the earlier MD work on Ag3SI by Ihara and Suzuki [9].
Our structural results in the α phase are similar to their results. They have also obtained the
structural properties in the β phase and the transport and dynamical features in the α and β

phases, though their potentials do not include a term for the charge–dipole interactions. And it
seems that the discussions of the temperature dependence of the results may not be sufficient.
These facts prompt us to investigate the structural properties in the β phase and the transport
and dynamical features in the β, α and molten phases by MD using VR-type potentials.

2. Method

The MD method, that we used in this study, is essentially similar to that used in paper I. We
briefly summarize as follows. We used VR-type potentials [6, 7] for MD simulations. These
are written as follows.

Vi j(r) = Ai j

(
σi + σ j

r

)n

+
Zi Z j e2

r
− 1

2
(αi Z 2

j + α j Z 2
i )

e2

r4
(2.1)

where i , j stand for the type of ions. The first term models the overlap repulsion between
the ions, where Ai j is the repulsive strength, and σi , σ j are the particle radii. The second is
the Coulomb interaction between the effective charge. Zi , Z j are the effective valence, which
we choose so as to preserve the condition of electric neutrality. e stands for the elementary
charge. The third term is the effective charge–dipole interaction, where the αi are the electronic
polarizabilities. The values of σI, σS and σAg are determined from the lattice structure of the
γ phase of Ag3SI as: σi + σ j = nearest neighbour distance. For the repulsive interaction
value for S–I, we use A1{(σI + σ ′

S)/r}7 where σ ′
S = (A2/A1)

7 × σS [10]. The values of the
parameters used are listed in table 1.

The MD calculations were carried out for 1080 (648Ag + 216S + 216I) atoms in a cubic
cell. The values of the lattice constant L in the α phase are taken from the experimental data
of Didisheim et al [11]. Periodic boundary conditions are used, and the long-range Coulomb
interaction is handled by the Ewald method. The particles are allocated to the initial position
of the crystal structure of the γ phase, and initial velocities with a Maxwellian distribution at
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(a) (b)

Figure 1. Trajectories of (a) anions and (b) cations at 450 K, projected onto a face of the cube.

a specified temperature, which is kept constant using the Nose method [12] in the constant
volume. One time step �t = 2.0 × 10−15 s is used in Verlet’s [13] integration algorithm.

3. The structure in the β phase

As reported in paper I, we have investigated the structural features of Ag3SI in the α phase. In
order to compare with them, we calculate the ionic distributions in the β phase, the temperature
region for which is between 157 K and 519 K [14]. In our simulation, we first place the atoms
on the positions of the γ phase. Then we increase the temperature to the arbitrary point of the
β phase, and then, the system is equilibrated for 3000 time steps at that temperature. For the
calculations of the average quantities of interest, 5000–30 000 time steps are performed.

3.1. The density distribution of cations

The positions of the ions in a lattice of the β phase have been investigated by several
authors [3, 8, 11, 15, 16]. In the β phase, I and S anions exhibit an ordered arrangement
in a bcc structure, such as that of Cs and Cl ions in a CsCl lattice, with I located in position
(0, 0, 0) and S in (1/2, 1/2, 1/2). Three Ag ions are distributed statistically at the 12(h) site
in the unit cell, (x, 1/2, 0), with the x-parameter changing with temperature.

Figures 1(a) and (b) show typical examples of trajectories in β phase at 450 K by MD,
which are obtained by the positions of the ions at each period of 20�t over the interval of
30 000�t with dots. The trajectories of 128 anions (a) and 192 cations (b) are projected onto
the basal plane. It is clearly seen that the anion sublattice is stable and of bcc structure. On
the other hand, the Ag ions spread on the (1, 0, 0) plane in the β phase. As we described in
paper I, the Ag ions in the α phase make diffusive motion alone ‘band’ distribution, which is
very different from the present result.

As is seen in figure 1(b), the Ag ions are gathered around the centre of the (1, 0, 0) plane.
In figures 2(a) and (b), we show the density distribution of the Ag ions by drawing grid (a)
and contour lines (b) on a (1, 0, 0) plane of thickness L/10, L being the lattice constant. As
is clearly seen from the contour lines of Ag ion densities in figure 2(b), they are preferentially
distributed in the vicinity of the 12(h) sites, whose positions are described as (x, 1/2, 0). At
450 K, the x-parameter obtained by MD is 0.39, which is very close to the experimental value
of 0.407 at 436 K [11].
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(a) (b)

Figure 2. The density distribution of Ag ions by drawing (a) grid and (b) contour lines on a (1, 0, 0)

plane at 450 K. Iodine ions at the lattice points are marked I.

As mentioned in section 1, Ihara and Suzuki [9] have performed the MD simulation in the
α and β phases using potentials which do not include a term for the charge–dipole interactions.
Their structural results for the β phase showed that the Ag ions were localized at the 6(b) site,
which is obviously different from our results that the Ag ions reside in the vicinity of the 12(h)
site. Such fine structure that appears in our result seems to come from a difference of the
potentials used, i.e. the effect of the polarization term in the potential sets. This fact may show
that it is necessary to include a polarization term to perform a detailed structural analysis.

3.2. Pair distribution functions

The pair distribution functions for this ternary system are defined as follows.

〈nαβ (r)〉�r = 4πr2�rρβ gαβ(r), (3.1)

where nαβ(r)�r denotes the number of β-type particles around an α-type particle between
spherical shells of radii r and r + �r . The bracket 〈 〉 denotes the thermal average as well
as the average over all α-type particles, and ρβ is the mean number density of the β-type
particles [17].

Figures 3(a) and (b) show the partial pair distribution functions for S–S, I–I, S–I, Ag–S,
Ag–I, and Ag–Ag at 485 K. As is shown in figure 3(a), the peaks in gSS(r), gSI(r) and gII(r) are
sharp like those of a crystal in a thermal agitation. From the first and second peaks of gSS(r)

and gII(r), the first and second nearest neighbour separation between S–S, and I–I are found
to be 4.8 and 6.8 Å, respectively. Their coordination number (area under the first peak, i.e.,
up to the first arrow) is 6. The next nearest neighbour coordination (i.e., the second arrow) is
found to be 18 (6 + 12). From the first and second peaks of gSI(r), the first and second nearest
neighbour separation between S–I is found to be 4.1 and 8.0 Å, respectively. Their coordination
number is 8. The next nearest neighbour coordination is estimated to be 32 (8 + 24). These
coordination numbers indicate that the anions form an ordered arrangement in a bcc lattice, in
which half of the lattice points are occupied by S ions and the rest by I ions.

From figure 3(b), the first peak in gAgS(r) is narrow and appears at 2.45 Å. Its coordination
number is 6. On the other hand, the first peak in gAgI(r) is broad and appears at 2.7 Å. The
distance of the first neighbour separation between Ag and I is rather closer than that is expected
from I on a lattice point and Ag on a 12(h) site. This fact may be explained by the large thermal
vibration of I ions from their lattice points, as seen in figure 2. The coordination number of
gAgI(r) is 12. The gAgAg(r) has a significant shoulder around 4.0 Å and broad peaks at 5.0 and
6.8 Å corresponding to the localized distribution of Ag ions. As we reported in paper I, these
features are very different from gAgAg(r) in the α phase, which shows a similar distribution
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(a) (b)

Figure 3. The partial pair distribution functions for S–S, I–I, S–I (a), and Ag–S, Ag–I, and Ag–Ag
(b) at 485 K.

as in the liquid state. These characteristic features of partial pair distribution functions are
consistent with the distributions of ions seen in figure 2.

4. Transport properties

We now examine the transport properties in the molten, α and β phases. In paper I, we reported
the diffusion coefficients obtained by MD in the α and molten phases. In this section, first we
calculate the conductivities and other quantities. Next, we discuss the frequency dependent
diffusion coefficient in relation to the experimental data.

4.1. Electric conductivities and other quantities

The method of calculation of electric conductivities is essentially similar to that used in
previous work [18, 19]. Electric conductivities in the α and molten phases of Ag3SI at
several temperatures are calculated by nonequilibrium MD (NEMD), which is performed in
the presence of the external field E. The procedure is carried out over 20 000 time steps. The
stationary electric current j is, in due course, induced through the increase of net velocities in
the direction of E, and converges after sufficient time steps on

j =
N∑

i=1

zivi (4.1)
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where zi and vi are the effective charge and the velocity of particle i , respectively. The relation
between electric current and electric field is indicated as follows:

ej = σ V E (4.2)

where σ is the electric conductivity, V is the volume of the MD cell, and e is the elementary
charge. The electric conductivity σ represents a sum of the partial conductivities, σ =
σAg+ + σS2− + σI− . When the external field is varied, the electric current is varied in proportion
to the electric conductivity. Therefore, the electric conductivity is derived from this gradient.
In NEMD, the partial conductivities are obtained from the following relations:

ej = ejAg+ + ejS2− + ejI−

= σAg+ V E + σS2− V E + σI− V E. (4.3)

Electric conductivities in the β phase of Ag3SI at several temperatures are calculated
by equilibrium MD (EMD). The procedure is carried out over 5000 time steps. The electric-
current correlation functions are averaged from 3000 samples in the following method [18, 19].
The electric-current correlation function J (t) without any external field is defined as

J (t) = 〈j(t)j(0)〉, (4.4)

with

j(t) =
N∑

i=1

zivi (t) and 〈j(t)〉 = 0 (4.5)

where N is the total number of ions, and vi(t) is the velocity of the particle i at time t . The
total current j(t) can be written as

j(t) = j+(t) + j−(t) (4.6)

where j+(t) and j−(t) stand for the electric current for cations and anions, respectively.
In the β phase of Ag3SI, the electric current is caused by cations. Therefore, the partial

conductivity for cations, which is the ‘total’ conductivity in the β phase, is given by integrating
the projection j(0) onto j+(t), 〈j+(t)j(0)〉 as

σ + = e2

3kBT V

∫ ∞

0
〈j+(t)j(0)〉 dt (4.7)

where kB is the Boltzmann constant, and T the absolute temperature.
The results of electric conductivities obtained in the α and molten phases are shown in

figure 4. Agreement between the experimental data and MD results is very good in the α phase.
As is seen in figure 4, the total conductivity decreases on melting. A similar phenomenon of
conductivity decreasing on melting is known in AgI [20]. Ohno et al [21] estimated the total
ionic conductivity of molten Ag3SI at 1123 K experimentally, though they have not obtained
the temperature dependence of the total ionic conductivity and their result is about twice as
large as the MD result. We believe that our results of conductivity are not far from reality,
because the collective motion between cations in the α phase, which may enhance the ionic
conductivity in the α phase, are thought to be abating in molten phase.

In the molten phase, it may be noteworthy that the total conductivities and partial
conductivities increase linearly with the rise in temperature. Furthermore, it seems that the
conductivities and partial conductivities have a constant ratio to each other in spite of increasing
temperature. The averages of the ratio of the partial conductivities, σS/σI and σAg/σI are
1.73 ± 0.07 and 1.43 ± 0.01, respectively. In the molten binary system, it is known that the
ratio of the partial conductivities is in inverse proportion to their mass ratio [22]. The present
results of conductivities in the molten phase may suggest that a similar relation also may hold
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Figure 4. The total and partial electric conductivities in the α and molten phases compared with
experimental data.

Table 2. The relation of the partial conductivities at various temperatures.

T (K) 1200 1300 1500

mS · σS/|ZS| + mI · σI/|ZI| 0.965 1.168 1.351 (×104 kg �−1 m−1 mol−1)
mAg · σAg/|ZAg| 0.965 1.168 1.351 (×104 kg �−1 m−1 mol−1)

true in molten ternary ionic systems. In fact, as is seen in table 2, the partial conductivities
obtained satisfy the following result:

mS · σS/|ZS| + mI · σI/|Z I| = mAg · σAg/|ZAg|, (4.8)

where mi is the mass of ion i . This equation is equivalent to the relation of the conservation
of the total momentum of ions [23].

Figure 5 shows the current–current correlation functions at various temperatures in the β

phase. Their convergence is adequate for time, though the difference of oscillation depending
on temperature can be seen in figure 5. The conductivities obtained by MD are shown in
figure 6 together with experimental data [24]. Their agreement is very good.

Next, we obtain the deviation from the Nernst–Einstein relation in the molten phase. The
partial conductivities are related to the partial diffusion coefficients as

σAg+ = nAg+ Z 2
Ag+ e2

kBT
DAg+(1 − �Ag+), (4.9)

σS2− = nS2− Z 2
S2−e2

kBT
DS2− (1 − �S2−), (4.10)

σI− = nI− Z 2
I−e2

kBT
DI−(1 − �I−), (4.11)

and the total conductivity is expressed as
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Figure 5. The current–current correlation functions at various temperature in the β phase.

Figure 6. The conductivities obtained by MD in the β phase compared with experimental data.

σtot = σAg+ + σS2− + σI−

= e2

kBT
(nAg+ Z 2

Ag+ DAg+ + nS2− Z 2
S2− DS2− + nI− Z 2

I− DI−)(1 − �) (4.12)

where Zi is the effective valence, Di is the diffusion coefficient, ni is the number density, and
�i and � are deviations from the Nernst–Einstein relation for the conductivity of ion i and for
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Figure 7. Deviation from the Nernst–Einstein relation for the conductivities of ions, �Ag+ , �S2− ,
�I− and for the total conductivity �.

the total conductivity, respectively. � and �i are related in the following equation as

� = nAg+ Z 2
Ag+ DAg+�Ag+ + nS2− Z 2

S2− DS2−�S2− + nI− Z 2
I− DI−�I−

nAg+ Z 2
Ag+ DAg+ + nS2− Z 2

S2− DS2− + nI− Z 2
I− DI−

. (4.13)

As is seen in figure 7, �Ag+ are positive, whereas �S2− , and �I− are negative. This fact
may suggest that anions move collectively in the molten state because of the large repulsive
force acting between them. A ‘caterpillar’-like mechanism has been proposed by Yokota [25]
to explain the collective motion in the transport properties of superionic conductors. A similar
mechanism may exist in the molten phase of this system. The different signs of �i between
anions and cations have been observed in molten AgI [26]. As is seen in figure 7, the deviations
�S2− and �I− approach zero as the temperature increases, which may suggest that collective
motion in molten state abates.

The friction constant γi for i -type ions is defined by the Langevin equation [27]. The
relation between the friction constant and electrical conductivity for i -type ions σi , is written
as

σi = ni Z 2
i e2

miγi
. (4.14)

Therefore, the friction constants are directly derived from the partial conductivities using
the above relation. As is seen in figure 8, the friction constants decrease as a function of
temperature. Since the friction constants represent the magnitude of the interference of motion,
this temperature dependence is consistent with the increasing of the conductivities and diffusion
coefficients as the temperature increases. It is also interesting that the friction constant γI− is
smaller than γAg+ at any temperature. This result may be caused by the effect that the attractive
force acting on Ag+ from a neighbouring S2− ion brings about a larger friction constant for
the Ag+ ion. This surmise may ensured by the fact that the first peak of gAgS(r) is seen in the
closest position among the partial pair distribution functions in the molten state [5].
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Figure 8. The temperature dependence of friction constants for Ag+, S2− and I−.

4.2. Velocity autocorrelation functions and frequency dependent diffusion coefficients

So far, we have studied the electric conductivities and other quantities related to them. Finally,
we obtain the velocity autocorrelation function (VAF) to explain the dynamical behaviour of
this system. The VAF for ξ -type ions is defined as [17],


i (t) =
∑

i(ξ)〈vi (t) · vi (0)〉ξ∑
i(ξ)〈vi (0) · vi (0)〉ξ , (4.15)

where vi (t) is the velocity of the i th ion at time t .
The obtained VAFs in the molten, α and β phases are shown in figure 9. The amplitude of

the VAF of Ag+, S2− and I− decreases with increasing temperature. In particular, the amplitude
of S2− is the largest in all phases. In general, the motion of particles is oscillatory when the
amplitude of the VAF of the particles is large. Therefore, it is known that the probability of
S2−, which has an oscillating motion, decreases with increasing temperature.

Next, we obtain the frequency dependent diffusion coefficients in the molten, α and β

phases to compare with neutron time-of-flight (TOF) spectra data. The Fourier transformation
of 
ξ(t) is given by [28]


ξ(ω) =
∫ ∞

0
dt 
ξ(t)eiωt . (4.16)

The frequency dependent diffusion coefficient Dξ (ω) is obtained from 
ξ(ω):

Dξ (ω) = kBT

mξ


ξ (ω). (4.17)

The static limit value of 
ξ(ω) is related to the self-diffusion coefficient, Dξ , as

Dξ = kBT

mξ


ξ (ω = 0). (4.18)

Figures 10(a)–(c) show the values of Dξ (ω) obtained in the β, α and molten phases,
respectively, at various temperatures as a function of frequencyω. One of the common features
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Figure 9. The VAF in the molten, α and β phases, from top to bottom, respectively.

of Dξ (ω) is that the peaks of Dξ (ω) become broader with increasing temperature. In the α

phase, it is clearly seen that the peaks of Dξ (ω) shift to lower frequency as the temperature
increases. The static limit values of Dξ in the molten phase and DAg in the α phase are almost
the same as those obtained by the mean square displacement as reported in paper I.

As is seen in figure 10, DS(ω) has two peaks around 10 and 37 ps−1 in the β phase. The
first peak of DS(ω) becomes a shoulder with increasing temperature and it cannot be seen
in the molten phase. DI(ω) has one peak at about 8–10 ps−1 in these three phases, which is
almost the same frequency as the first peak of DS(ω). It is interesting that the spectral density
of I− has two peaks in AgI [29], whose shape is quite different from that of Ag3SI. In the β

phase, DAg(ω) has a peak at about 4.7 ps−1 and a shoulder around 11 ps−1. In the α phase,
they become one broad peak at around 8.2 ps−1, and they become a shoulder with increasing
temperature in the molten phase.

As the temporal Fourier transformation of the VAF, i.e. Dξ(ω), is proportional to the density
of states of the normal modes in a harmonic system, it might be appropriate to compare Dξ (ω)

with experimental data of the density of states of the phonon [30, 31]. Shibata and Hoshino [32]
performed measurements of neutron TOF spectra to obtain the generalized density of states [33]
from the dynamical structure factor of Ag atoms in the β and quenched α phases of Ag3SI. The
experimental generalized density of states for Ag atoms show a resemblance to the DAg(ω)

in this work, e.g., the peak positions of the generalized density of states are close to those of
the DAg(ω). The experimental generalized density of states for Ag atoms has a pronounced
peak at about 4.0 ps−1 and a shoulder around 8.4 ps−1 in the β phase, and a broad peak around
6.7 ps−1 in the quenched α phase, though we might have to take into account that the neutron
TOF experimental data have a large margin of error.
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(a)

(c)

(b)

Figure 10. The frequency dependent diffusion coefficient Dξ (ω) in the β (a), α (b) and molten (c)
phases at various temperatures as a function of frequency ω.
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5. Conclusions

So far, we have presented the results of the investigation of structural properties in the β phase
and transport properties in the β, α and molten phases of Ag3SI by MD. The VR-type pair
potentials provide a satisfactory description of these properties of Ag3SI. The MD results of
the density distribution of Ag ions on a (1, 0, 0) plane and pair distribution functions in the β

phase are in good agreement with the structures obtained by experiment.
Electric conductivities are calculated by NEMD in the αand molten phases, and by EMD in

the β phase. The agreement between experiment and the simulation results is very good. The
total conductivities and partial conductivities increase linearly with increasing temperature.
The evaluated deviations from the Nernst–Einstein relation for cations are positive, whereas
those for anions are negative. This fact may suggest that anions move collectively in the molten
state. The friction constants obtained from the partial conductivities decrease as a function of
temperature, which represents that the magnitude of the interference of motion decreases with
increasing temperature.

In the molten, α and β phases, the amplitude of the VAF of Ag+, S2− and I− decreases
with increasing temperature. This fact may suggest that the probability of ions, which have
oscillating motion, decreases with increasing temperature. The frequency dependent diffusion
coefficient Dξ (ω) is obtained from the Fourier transformation of the VAF. The static limit
values of the Dξ in the molten phase and DAg in the α phase are almost the same as the
diffusion coefficients obtained by mean square displacement as we reported in paper I. The
peaks of the Dξ (ω) become broader with increasing temperature. The peaks of the Dξ (ω) in
the α phase shift to lower frequency as the temperature increases. The DAg(ω) in this work
have similar features and peak positions to the generalized density of states estimated from the
dynamical structure factor of Ag atoms obtained from neutron TOF spectra.

In binary ionic liquids, the relation between the ratio of the partial conductivities and
masses of ions has been investigated [22]. As we have summarized above, the present result
for the ionic conductivities of Ag3SI strongly suggests that there may be another general
relation between the partial conductivities in ternary ionic liquids apart from (4.8), otherwise
the partial conductivities cannot converge to a certain ratio. The theoretical background of this
fact will be discussed in a future work.
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